好一点小编带来了液氨是有机物吗,希望能对大家有所帮助,一起来看看吧!

液氨是有机物吗
不是的,液氨是无机物,下面是其介绍,希望对您有用,望采纳谢谢
液氨,又称为无水氨,是一种无色液体。氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。
查看精彩图册
目录
简介
理化性质
产品用途
液氨来源
合成氨
1.3.1 高压法
1.3.2 中压法
1.3.3 低压法
其他来源包装储运
中毒处置
毒性及中毒机理
接触途径及中毒症状
急救措施废气回收
2012年中国液氨市场走势分析展开简介
理化性质
产品用途
液氨来源
合成氨
1.3.1 高压法
1.3.2 中压法
1.3.3 低压法
其他来源包装储运
中毒处置
毒性及中毒机理
接触途径及中毒症状
急救措施废气回收
2012年中国液氨市场走势分析展开编辑本段简介英文名 Liquid ammonia(anhydrous ammonia)
结构及分子式NH3
生产方法 合成氨气经压缩制得液氨产品。
产品性能 液氨为无色液体,有强烈*性气味,极易气化为气氨。密度0.617g/cm3;沸点为-33.5℃,低于-77.7℃可成为具有臭味的无色结晶。
编辑本段理化性质分子式:NH3 气氨相对密度(空气=1):0.59 分子量:17.04液氨相对密度(水=1):0.602824(25℃)
CAS编号:7664-41-7自燃点:651.11℃
危险货物编号: 23003 分子量: 17.03
熔点(℃):-77.7 爆炸极限:16%~25%
沸点(℃):-33.4 1%水溶液PH值:11.7
比热kJ(kg·K) 氨(液体)4.609 氨(气体)2.179
蒸气压:882kPa(20℃)
存在自偶电离:2NH3↔NH4+ +NH2-
因此,在液氨中NH4Cl是酸,NaNH2是碱
编辑本段产品用途《2013-2017年中国液氨行业调研与投资前景评估报告》液氨主要用于生产硝酸、尿素和其他化学肥料,还可用作医药和农药的原料。
液氨
在国防工业中,用于*火箭、导弹的推进剂。可用作有机化工产品的氨化原料,还可用作冷冻剂。液氨还可用于纺织品的丝光整理。NH3分子中的孤电子对倾向于和别的分子或离子形成配位键,生成各种形式的氨合物。如[Ag(NH3)2]+、[Cu(NH3)4]2+、BF3·NH3等都是以NH3为配位的配合物。 液氨是一个很好的溶剂,由于分子的极性和存在氢键,液氨在许多物理性质方面同水非常相似。一些活泼的金属可以从水中置换氢和生成氢氧化物,在液氨中就不那么容易置换氢。但液氨能够溶解金属生成一种蓝色溶液。这种金属液氨溶液能够导电,并缓慢分解放出氢气,有强还原性。例如钠的液氨溶液: 金属液氨溶液显蓝色,能导电并有强还原性的原因是因为在溶液中生成“氨合电子”的缘故。例如金属钠溶解在液氨中时失去它的价电子生成正离子:
液氨加热至800~850℃,在镍基催化剂作用下,将氨进行分解,可以得到含75%H2、25%N2的氢氮混合气体。用此法制得的气体是一种良好的保护气体,可以广泛地应用于半导体工业、冶金工业,以及需要保护气氛的其他工业和科学研究中。
编辑本段液氨来源合成氨氨的合成是合成氨生产的最后一道工序,其任务是将经过精制的氢氮混合气在催化剂的作用下多快好省地合成为氨。对于合成系统来说,液体氨即是它的产品。
工业上合成氨的各种工艺流程一般以压力的高低来分类。
1.3.1 高压法操作压力70~100MPa,温度为550~650℃。这种方法的主要优点是氨合成效率高,混合气中的氨易被分离。故流程、设备都比较紧凑。但因为合成效率高,放出的热量多,催化剂温度高,易过热而失去活性,所以催化剂的使用寿命较短。又因为是高温高压操作,对设备*、材质要求都较高,投资费用大。目前工业上很少采用此法生产。
1.3.2 中压法操作压力为20~60MPa,温度450~550℃,其优缺点介于高压法与低压法之间,目前此法技术比较成熟,经济性比较好。因为合成压力的确定,不外乎从设备投资和压缩功耗这两方面来考虑。从动力消耗看,合成系统的功耗占全厂总功耗的比重最大。但功耗决不但取决于压力一项,还要看其它工艺指标和流程的布置情况。总的来看,在15~30Pa的范围内,功耗的差别是不大的,因此世界上采用此法的很多。
1.3.3 低压法操作压力10MPa左右,温度400~450℃。由于操作压力和温度都比较低,故对设备要求低,容易管理,且催化剂的活性较高,这是此法的优点。但此法所用催化剂对毒物很敏感,易中毒,使用寿命短,因此对原料气的精制纯度要求严格。又因操作压力低,氨的合成效率低,分离较困难,流程复杂。实际工业生产上此法已不采用了。合成氨工艺流程大概可以分为:原料气的制备;原料气的净化;气体压缩和氨的合成四大部分。
其他来源工业上用苯胺在催化剂的作用下,连续化生产二苯胺的过程中就有副产物氨气生成,经过压缩成高压气体,然后在降温冷却成液体制的液氨,在此过程中要进行排污,有杂质带入,因此相比高纯度的合成氨,此法得到的液氨纯度相比较低,用途因此也受到限制。
编辑本段包装储运液氨为第2.3类 有毒气体
采用钢瓶或槽车灌装。灌装用钢瓶或槽车应符合国家劳动局颁发的
液氨储罐
“气瓶安全监察规程”、“固定式压力容器安全技术监察规程”等有关规定。允许重量充装系数为0.52kg/L。装运液氨的钢瓶和槽车必须符合中华人民共和国交通部制订的《危险货物运输规则》,运输过程中应避免受热,严禁烟火。钢瓶必须有安全帽,瓶外用橡皮圈或草绳包扎,防止激烈撞击和震动。液氨钢瓶应存放于库房或有棚的平台上。露天堆放时,应以帐篷遮盖,防止日光直射。主要靠铁路和公路运输。
编辑本段中毒处置毒性及中毒机理液氨人类经口TDLo:0.15 ml/kg
液氨人类吸入LCLo:5000 ppm/5m
氨进入人体后会阻碍三羧酸循环,降低细胞色素氧化酶的作用。致使脑氨增加,可产生神经毒作用。高浓度氨可引起组织溶解坏死作用。
接触途径及中毒症状
液氨
1.吸入
吸入是接触的主要途径。氨的*性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。
(1)轻度吸入氨中毒表现有鼻炎、咽炎、气管炎、支气管炎。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。
(2)急性吸入氨中毒的发生多由意外事故如管道破裂、阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜*和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。
(3)严重吸人中毒可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度可直接影响肺毛细血管通透性而引起肺水肿。
2.皮肤和眼睛接触
低浓度的氨对眼和潮湿的皮肤能迅速产生*作用。潮湿的皮肤或眼睛接触高浓度的氨气能引起严重的化学烧伤。
皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀部位呈胶状并发软,可发生深度组织破坏。
高浓度蒸气对眼睛有强*性,可引起疼痛和烧伤,导致明显的炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症。多次或持续接触氨会导致结膜炎。
急救措施1.清除污染
如果患者只是单纯接触氨气,并且没有皮肤和眼的*症状,则不需要清除污染。假如接触的是液氨,并且衣服已被污染,应将衣服脱下并放入双层塑料袋内。
液氨事故
如果眼睛接触或眼睛有*感,应用大量清水或生理盐水冲洗20分钟以上。如在冲洗时发生眼睑痉挛,应慢慢滴入1~2滴0.4%奥布卡因,继续充分冲洗。如患者戴有隐形眼镜,又容易取下并且不会损伤眼睛的话,应取下隐形眼镜。
应对接触的皮肤和头发用大量清水冲洗15分钟以上。冲洗皮肤和头发时要注意保护眼睛。
2.病人复苏
应立即将患者转移出污染区,对病人进行复苏三步法(气道、呼吸、循环):
气道:保证气道不被舌头或异物阻塞。
呼吸:检查病人是否呼吸,如无呼吸可用袖珍面罩等提供通气,
循环:检查脉搏,如没有脉搏应施行心肺复苏。
3.初步治疗
氨中毒无特效解毒药,应采用支持治疗。
如果接触浓度≥500ppm,并出现眼*、肺水肿的症状,则推荐采取以下措施:先喷5次*(用定量吸入器),然后每5分钟喷两次,直至到达医院急症室为止。
如果接触浓度≥1500ppm,应建立静脉通路,并静脉注射1.0g甲基*龙(methylprednisolone)或等量类固醇。(注意:在临床对照研究中,皮质类固醇的作用尚未证实。)
对氨吸入者,应给湿化空气或氧气。如有缺氧症状,应给湿化氧气。 如果呼吸窘迫,应考虑进行气管插管。当病人的情况不能进行气管插管时,如条件许可,应施行环甲状软骨切开术。对有支气管痉挛的病人,可给支气管扩张剂喷雾,如叔丁喘宁。 如皮肤接触氨,会引起化学烧伤,可按热烧伤处理:适当补液,给止痛剂,维持体温,用消毒垫或清洁床单覆盖伤面。如果皮肤接触高压液氨,要注意冻伤。
编辑本段废气回收液氨整理加工过程有废气排出,其组成有水蒸气、空气和氨气,其中氨气是有害气体,影响健康污染环境,为此要减少排放,加强回收,一方面可降低成本,另一方面可保护环境。
液氨报警器
氨的回收有吸收法,把来自液氨整理机排出的气体,通过管道输送至回收装置的洗涤塔(吸收塔),把混有空气的氨气在此塔内用水吸收成氨水,此时空气被清洗并排出塔外,然后通过蒸馏塔将氨和水分离,氨被蒸馏吸收制成浓氨水,浓氨水经精馏即成浓氨气,再将浓氨气经压缩机加压和冷凝冷却成液氨,最后输入贮存罐。
在氨的回收装置中,洗涤塔顶部有排气口,要控制排放气体中的含氨量,要低于环保要求。澄江纺机厂和南京化工大学协作创制的氨回收系统,是吸收和压缩相结合的方法。当年2000年1月由中国纺机器材协会组织的专家现场考察,一致认为该氨回收循环系统是成功的,在整个回收系统是创造性地运用了低压吸收、低压精馏、低温除水、压缩冷凝的“三低一压”技术,既简化设备又节约能源,该法是在低温低压下操作运转,安全系数大,还有利于减少维修力量。主要有洗涤塔(吸收塔)、精馏塔、压缩机、冷凝器、液氨贮存罐。
液氨监测与报警
液氨在使用过程中发生泄露须报警,由宝鸡市凯特利电子公司生产的液氨泄露报警和液氨自动充装切断报警装置符合国家技术监督和安检部门的要求。
液氨的压力
因为氨的临界温度为132.4℃,低于此温度只要予以适当压力即可将其液化。
在常温下,大概需要7~8个大气压即可将氨液化为液氨存放。
但实际使用温度未必是常温,我国规定设计时要求不低于50℃的饱和蒸气压力。液氨容器的设计压力应该为2.16MPa
编辑本段2012年中国液氨市场走势分析随着近几年来,煤化工产能过剩的问题更加凸显。从2011-2012年,我国合计合成氨产能达626万吨,尿素产能达1278万吨。2012年6月份我国国内合成氨产量约为457.8万吨。2011年6月我国国内合成氨产量约为439.5万吨。同比增长为4%。2012年1-6月份国内合成氨总产量约为2711.4万吨。2011年1-6月份国内合成氨总产量约为2532.2万吨,同比增长为6.6%。我国合成氨产量过剩,导致厂家纷纷降价*,各地区成交基本顺畅。
2012年上半年国内液氨行情处于涨跌不稳的态势中,一波未平一波又起,整体行情震荡不止。上半年液氨的最高价格为,江苏北部地区液氨出厂主流价格在3250元/吨,江苏南部地区出厂主流3500元/吨左右。安徽长江以南地区液氨出厂主流3350元/吨承兑,安徽长江以北地区液氨出厂3250元/吨。河北地区液氨出厂价格2950-3000元/吨左右。山东地区液氨出厂主流3100-3150元/吨现金。受尿素、复合肥需求较好所支撑,液氨出厂价格持续高位。上半年合成氨最低价格为,河北市场出厂主流报价为2650-2700元/吨。山东地区出厂价格为2700-2800元/吨,苏北价格为2900元/吨。
从目前的行情来看,国内的液氨涨跌幅度不会太大,即国内在2012年将投产,以及扩产的液氨装置较多,但是基本供需能保持平衡。新增液氨装置,同时也配建尿素以及其他下游产品。8-9月我国农业处于收割、播种的时期,农业需求减弱,市场行情以疲软为主。预计下半年液氨行情将窄幅波动,北方液氨价格维持在2900-3000元/吨震荡。[1]
液氨多少钱一吨
液氨,又称为无水氨,是一种无色液体,有强烈*性气味。氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。氨易溶于水,溶于水后形成铵根离子NH4+、氢氧根离子OH-,呈碱性的碱性溶液。液氨多储于耐压钢瓶或钢槽中,且不能与乙醛、丙烯醛、硼等物质共存。液氨在工业上应用广泛,具有腐蚀性且容易挥发,所以其化学事故发生率很高。
尿素吧 东方财富
本周国内尿素价格先跌后涨,报价先由上周末的2498.00元/吨下跌至12月6日的2450.00元/吨,跌幅1.92%,后又上涨至本周末的2456.00元/吨,涨幅0.24%,较去年同期同比上涨35.69%。整体看来,本周尿素行情一波三折,周末有上涨趋势。12月10日尿素商品指数为114.23,较昨日上升了0.09点,较周期内最高点144.57点(2021-10-26)下降了20.99%,较2016年08月17日最低点55.60点上涨了105.45%。12月中旬国内尿素市场行情或小幅震荡上涨为主。生意社尿素分析师认为,虽然上游天然气、煤炭价格大幅下跌,成本支撑不足,化肥冬储推进缓慢,但12月中旬尿素企业进入集中检修期,供应偏紧,后市尿素市场价格或小幅波动上涨为主。
拓展资料:
1.从上下游产业链数据来看:本周尿素上游产品整体看来大幅下跌:液化天然气价格大幅下跌,报价由上周末的6383.33元/吨下跌至本周末的4700.00元/吨,跌幅26.37%,较去年同期,同比下跌12.53%;动力煤价格小幅下跌,报价由上周末的1085.00元/吨下跌至本周末的1083.75元/吨,跌幅0.12%,较去年同期,同比上涨58.62%。液氨价格小幅下跌,报价由上周末的4630.00元/吨下跌至本周末的4410.00元/吨,跌幅4.75%,较去年同期,同比上涨37.81%。本周尿素下游三聚氰胺价格大幅下跌,报价由上周末的16126.67元/吨下跌至本周末的12726.67元/吨,跌幅21.08%。整体看来,尿素上下游产业链整体大幅下行,对尿素价格产生利空影响。
2.从需求方面来看:农业需求推进缓慢,工业需求观望为主。尿素价格后市不明朗,化肥冬储推进缓慢,生产计划推延。三聚氰胺市场价格大幅下跌,企业库存承压,市场商谈重心走弱。而从供应方面来看:气头企业停产检修时间推迟,预计12月中旬陆续停车。现尿素日产14万吨左右。整体看来,尿素成本支撑减弱,下游需求转好,尿素供应不足,后市尿素小幅上涨为主。
液氨液氮哪个价格贵
当然是液氮贵,工业生产冷冻大多是用液氨。氨气的压缩液化比较容易,成本相对较低。
并且制冷效果液氮没有液氨好。
但是液氮安全、挥发无异味,实验室做实验一般用液氮,价钱大概5元一升。
山西鲁能晋北铝业我可以进吗?
1、总概:六国公布了07年年度报告,07年EPS0.45元,根据07年半年报、年报中分部产品的成本、利润数据及过去一年及近期硫酸、磷矿石、液氨价格,磷酸一铵、二铵、复合肥价格,推算得出结论,保守预计六国08年EPS1.32元,按国际最大DAP生产商MOSIC08年30倍PE估值,未来价格目标40元左右。
2、基本数据:
A、磷酸二铵产品成本构成,生产1吨磷酸二胺需要1.17吨98%的硫酸、1.7吨国产磷矿石、0.2吨液氨,原材料成本占总成本比例为85%;
B、07年上半年硫酸均价450元,下半年600元,目前价格1300元-1350元;磷矿石07年上半年均价420元、下半年均价450元、目前均价480元;液氨07年上半年均价2300元,下半年到目前均价2800元;
C、六国07年全年磷复肥总产量101.5万吨,08年计划108万吨;
D、六国二铵、一铵及复合肥分部收入、营业利润、营业利润率、总利润等数据参见07年度半年报、07年年报。
3、推算过程:
A、核心结论是08年EPS,需要推出08年收入、利润,则需要得到六国的二胺、一铵、复合肥的生产量和*价格、毛利率。产品价格自07年下半年以来随着原材料价格上涨,产品价格飙升,目前价格为:二铵4000-4100,一铵3400左右,复合肥2400,价格采样很容易,问题核心就在分产品产量和毛利率;
B、产量:
全年磷酸二铵产量约为37万吨,由于一铵跟二铵成品的相似性,根据市场价格和产品收入,倒推得出07年一铵均价2000元,产量15.5万吨,复合肥均价1900元,产量47.05万吨,合计磷复肥产量100万吨,与公司公布总产量101万吨基本吻合。
C、08年公司计划生产108万吨磷复肥,按照07年的产品比例,可以推算出08年二铵产量为40.1万吨、一铵产量16.8万吨、复合肥50.9万吨。需要说明的是,看起来六国的复合肥中使用了公司自产的磷酸一铵,其余外*,大约1吨磷酸一铵可以提供3吨复合肥(45%NPK含量)所需的P含量,因此实际公司磷酸一铵07年产量为31万吨左右。合计磷铵产量31+37=68万吨,与公司07年产能基本吻合。
D、目前市场原材料价格可以计算得出磷酸二铵总成本为3480元/吨,市场价格4000元/吨计算,营业利润率为15%。一铵产品毛利07年综合比二胺低1个百分点,08年毛利率为14%,由于钾肥价格上涨,维持复合肥毛利与07年持平,毛利率为9%。倒推一铵08年均价为3010元/吨,复合肥为1912元/吨。
E:六国08年收入利润结果:
价格产量(万吨)收入(万元)营业利润率营业利润(万元)
二铵400040.116040015%24060
一铵3010.75316.850580.6514%7081.291
复合肥1912.7550.997358.989%8762.308
合计108308339.639903.6
所得税25%
净利润(万元)29927.7
EPS(元)1.3242
想知道更多,可以私下交流,腾讯柒八壹叁壹柒六零壹
1、总概:六国公布了07年年度报告,07年EPS0.45元,根据07年半年报、年报中分部产品的成本、利润数据及过去一年及近期硫酸、磷矿石、液氨价格,磷酸一铵、二铵、复合肥价格,推算得出结论,保守预计六国08年EPS1.32元,按国际最大DAP生产商MOSIC08年30倍PE估值,未来价格目标40元左右。
2、基本数据:
A、磷酸二铵产品成本构成,生产1吨磷酸二胺需要1.17吨98%的硫酸、1.7吨国产磷矿石、0.2吨液氨,原材料成本占总成本比例为85%;
B、07年上半年硫酸均价450元,下半年600元,目前价格1300元-1350元;磷矿石07年上半年均价420元、下半年均价450元、目前均价480元;液氨07年上半年均价2300元,下半年到目前均价2800元;
C、六国07年全年磷复肥总产量101.5万吨,08年计划108万吨;
D、六国二铵、一铵及复合肥分部收入、营业利润、营业利润率、总利润等数据参见07年度半年报、07年年报。
3、推算过程:
A、核心结论是08年EPS,需要推出08年收入、利润,则需要得到六国的二胺、一铵、复合肥的生产量和*价格、毛利率。产品价格自07年下半年以来随着原材料价格上涨,产品价格飙升,目前价格为:二铵4000-4100,一铵3400左右,复合肥2400,价格采样很容易,问题核心就在分产品产量和毛利率;
B、产量:
全年磷酸二铵产量约为37万吨,由于一铵跟二铵成品的相似性,根据市场价格和产品收入,倒推得出07年一铵均价2000元,产量15.5万吨,复合肥均价1900元,产量47.05万吨,合计磷复肥产量100万吨,与公司公布总产量101万吨基本吻合。
C、08年公司计划生产108万吨磷复肥,按照07年的产品比例,可以推算出08年二铵产量为40.1万吨、一铵产量16.8万吨、复合肥50.9万吨。需要说明的是,看起来六国的复合肥中使用了公司自产的磷酸一铵,其余外*,大约1吨磷酸一铵可以提供3吨复合肥(45%NPK含量)所需的P含量,因此实际公司磷酸一铵07年产量为31万吨左右。合计磷铵产量31+37=68万吨,与公司07年产能基本吻合。
D、目前市场原材料价格可以计算得出磷酸二铵总成本为3480元/吨,市场价格4000元/吨计算,营业利润率为15%。一铵产品毛利07年综合比二胺低1个百分点,08年毛利率为14%,由于钾肥价格上涨,维持复合肥毛利与07年持平,毛利率为9%。倒推一铵08年均价为3010元/吨,复合肥为1912元/吨。
E:六国08年收入利润结果:
价格产量(万吨)收入(万元)营业利润率营业利润(万元)
二铵400040.116040015%24060
一铵3010.75316.850580.6514%7081.291
复合肥1912.7550.997358.989%8762.308
合计108308339.639903.6
所得税25%
净利润(万元)29927.7
EPS(元)1.3242
想知道更多,可以私下交流,腾讯柒八壹叁壹柒六零壹
什么是氮肥氮肥的作用
近年来,中国经济呈现快速、稳定、健康发展,氮肥行业作为化工行业的一个分支,呈现出快速发展的态势,氮肥行业发展的稳定与否,关系到国计民生。什么是氮肥? 氮肥种类有哪些呢? 氮肥的作用是什么呢?下面是我整理的什么是氮肥,欢迎阅读。
什么是氮肥
氮肥是含有作物营养元素氮的化肥。元素氮对作物生长起着非常重要的作用,它是植物体内氨基酸的组成部分、是构成蛋白质的成分,也是植物进行光合作用起决定作用的叶绿素的组成部分。氮还能帮助作物分殖,施用氮肥不仅能提高农产品的产量,还能提高农产品的质量。氮肥,也为无机盐的一种。
氮肥种类
铵态氮肥
铵态氮肥包括碳酸氢铵(NH4HCO3)、硫酸铵{(NH4)2SO4}、氯化铵(NH4Cl)、氨水(NH3.H2O)、液氨(NH3)等。
铵态氮肥的共同特性:
1、铵态氮肥易被土壤胶体吸附,部分进入粘土矿物晶层。
2、铵态氮易氧化变成硝酸盐。
3、在碱性环境中氨易挥发损失。
4、高浓度铵态氮对作物容易产生毒害。
5、作物吸收过量铵态氮对钙、镁、钾的吸收有一定的抑*用。
硝态氮肥
硝态氮肥包括硝酸钠(NaNO3)、硝酸钙{Ca(NO3)2}、硝酸铵(NH4NO3)等。
硝态氮的共同特性:
1、易溶于水,在土壤中移动较快。
2、NO3—吸收为主吸收,作物容易吸收硝酸盐。
3、硝酸盐肥料对作物吸收钙、镁、钾等养分无抑*用。
4、硝酸盐是带负电荷的阴离子,不能被土壤胶体所吸附。
5、硝酸盐容易通过反硝化作用还原成气体状态(NO、N2O、N2),从土壤中逸失。
铵态硝态氮肥
铵态硝态氮肥包括硝酸铵、硝酸铵钙、硫硝酸铵。[1]
酰胺态氮肥
酰胺态氮肥——尿素{CO(NH2)2},含N46.[2] 7%,是固体氮中含氮最高的肥料。
尿素
尿素是 人工合成的第一个有机物,广泛存在于自然界中,如新鲜人粪中含尿素0.4%。
别名:碳酰二胺、碳酰胺、脲 。
分子式:CO(NH2)2,因为在人尿中含有这种物质,所以取名尿素。尿素含氮(N)46%,是固体氮肥中含氮量最高的。
生产方法
工业上用液氨和二氧化碳为原料,在高温高压条件下直接合成尿素,化学反应如下:2NH3+CO2→NH2COONH4→CO(NH2)2+H2O尿素易溶于水,在20℃时100毫升水中可溶解105克,水溶液呈中性反应。尿素产品有两种。结晶尿素呈白色针状或棱柱状晶形,吸湿性强。粒状尿素为粒径1~2毫米的半透明粒子,外观光洁,吸湿性有明显改善。20℃时临界吸湿点为相对湿度80%,但30℃时,临界吸湿点降至72.5%,故尿素要避免在盛夏潮湿气候下敞开存放。在尿素生产中加入石蜡等疏水物质,其吸湿性大大下降。
施用
尿素是 生理中性肥料,在土壤中不残留任何有害物质,长期施用没有不良影响。但在造粒中温度过高会产生少量缩二脲,又称双缩脲,对作物有抑*用。我国规定肥料用尿素缩二脲含量应小于0.5%。缩二脲含量超过1%时,不能做种肥,苗肥和叶面肥,其他施用期尿素含量也不宜过多或过于集中 。
尿素是有机态氮肥,经过土壤中的脲酶作用,水解成碳酸铵或碳酸氢铵后,才能被作物吸收利用。因此,尿素要在作物的需肥期前4~8天施用。
施用:尿素适用于作基肥和追肥,有时也用作种肥。尿素在转化前是分子态的,不能被土壤吸附,应防止随水流失;转化后形成的氨也易挥发,所以尿素也要深施覆土。
氮肥 其他用途
调节花量
为了克服苹果地大小年,遇小年时,于花后5-6周(苹果花芽分化的临界期,新梢生长缓慢或停止,叶片含氮量呈下降趋势)叶面喷施0.5%尿素水溶液,连喷2次,可以提高叶片含氮量,加快新梢生长抑制花芽分化,使大年的花量适宜。
疏花疏果
桃树的花器对尿素较为敏感但嘎面反应较迟钝,因此,国外用尿素对桃和油桃进行了疏花疏果试验,结果表明,桃和油桃的疏花疏果,需要较大浓度(7.4%)才能显示出良好效果,最适合浓度为8%-12%,喷后1—2周内,即能达到疏花疏果的目的。但是,在不同的土地条件下,不同时期及不同品种的反应尚需进一步试验。
水稻制种
在杂交稻制种技术中,为了提高父母本的异交率,以增加杂交稻制种量或不育系繁种量,一般都采用赤毒素喷施母本以减轻母本包颈程度或使之完全抽出;或喷施父母本,调节二者的生长,使其花期同步。由于赤霉素价格较贵,用其制种成本高。人们用尿素代替赤霉素进行实验,在孕穗盛期、始穗期(20%抽穗)使用1.5%-2%尿素,其繁种效果与赤霉素类似,且不会增加株高。
防治虫害
用尿素、洗衣粉、清水4:1:400份,搅拌混匀后,可防止果树、蔬菜、棉花上的蚜虫、红蜘蛛、菜青虫等害虫,杀虫效果达90%以上。
尿素铁肥
尿素以络合物的形式,与Fe2+形成螯合铁。这种有机铁肥造价低,防治缺铁失绿效果很好。此外叶面喷0.3%硫酸亚铁时加入0.3%尿素,防治失绿效果比单喷0.3%硫酸亚铁好。
我国发展
20世纪 以来,氮化肥的生产一直居于举足轻重的地位。这主要是由于世界土壤的平均氮肥力不高,氮素不易在土壤中积累,而现代集约化农业又促使土壤有机质与氮的过多损耗,在多数条件下单位氮素的增产量高于磷、钾养分。
我国的氮肥工业发展较晚,到1935年才先后在大连和南京建成两座氮肥厂生产硫酸铵。1949年前,全国累计生产的氮肥量为60万吨(N),主要用于沿海各省。新中国成立后,氮肥工业先于磷钾肥获得迅速发展。1953年我国年产氮肥以养分计算为5万吨,超过历史上1941年最高年产量4.8万吨。经过第一和第二个国民经济发展五年计划,至1965年,全国氮肥产量已达103.7万吨(N)比1953年增长近10倍。以后,经过1969~1978年10年大、中、小型化肥厂并举的大发展时期,全国新建了1000余座小氮肥厂和10余座年产30万吨合成氨的大氮肥厂。至1983年,全国氮肥产量猛增至1109.4万吨(N),成为仅次于前苏联的世界上第二位氮肥生产国。1991年全国氮肥产量达到1510.0万吨,跃居世界第一位。2005年我国共生产合成氨4629.85 万吨,生产氮肥3200.7万吨(折纯氮),其中尿素4147.13万吨(实物量)。2006年全国农用氮磷钾化肥(折纯)产量为5,592.79万吨,比2005年同比增长8.0%;2007年1-11月全国农用氮磷钾化肥(折纯)产量为5,248.58万吨,比2006年同期相比增长13.1%。
作物氮素
农作物含氮量
氮是植物生活中具有特殊重要意义的一个营养元素。氮在植物体内的的平均含量约占干重的1.5%,含量范围在0.3%~5.0%。
作物 器官 N(%
水稻
茎秆 0.5~0.9
籽粒 2.0~2.5
小麦
茎秆 0.4~0.6
籽粒 1.5~1.7
玉米
茎秆 0.5~0.7
籽粒 2.8~3.5
棉花
纤维 0.28~0.33
茎秆 1.2~1.8
籽粒 4.0~4.5
油菜
茎秆 0.8~1.2
籽粒 4.0~6.5
豆科作物 茎秆 0.8~1.4
在植物体内的分布,一般集中于生命活动最活跃的部分(新叶、分生组织、繁殖器官)。因此,氮素供应的充分与否和植物氮素营养的好坏,在很大程度上影响着植物的生长发育状况。农作物生育的有些阶段,是氮素需要多,氮营养特别重要的阶段,例如禾本科作物的分孽期、穗分化期,棉花的蕾铃期,经济作物的大量生长及经济产品形成期等。在这些阶段保证正常的氮营养,就能促进生育,增加产量。进入作物体内的氮素,也可能经由可溶性氮的分泌(如水稻叶尖分泌的叶滴),氮的挥发等方式而损失,这种损失主要发生在作物的顶部,尤其在开花至成熟期。
氮不足一般表现
在实际生产中,经常会遇到农作物氮营养不足或过量的情况,氮营养不足的一般表现是:植株矮小,细弱;叶呈黄绿、黄橙等非正常绿色,基部叶片逐渐干燥枯萎;根系分枝少;禾谷类作物的分蘖显著减少,甚至不分蘖,幼穗分化差,分枝少,穗形小,作物显著早衰并早熟,产量降低。
氮过量一般表现
物氮营养过量的一般表现是:生长过于繁茂,腋芽不断出生,分蘖往往过多,妨碍生殖器官的正常发育,以至推迟成熟,叶呈浓绿色,茎叶柔嫩多汁,体内可溶性非蛋白态氮含量过高,易遭病虫为害,容易倒伏,禾谷类作物的谷粒不饱满(千粒重低),秕粒多;棉花烂铃增加,铃壳厚,棉纤维品质降低;甘蔗含糖率降低;薯类薯块变小,豆科作物枝叶繁茂,结荚少,作物产量降低。
对氮素吸收利用
作物具有吸收同化无机氮化物的能力。因此,除存在于土壤中的少量可溶性含氮有机物,如尿素,氨基酸,酰铵等外,作物从土壤中吸收的氮素主要是铵盐和硝酸盐,既铵态氮和硝态氮,被吸收到体内的铵态氮,可直接光合作用产物有机酸结合,形成氨基酸,进而形成其它含氮有机物。而硝态氮在体内还原呈铵态氮后才能被吸收利用。植物吸收的氨和硝态氮还原成的氨,在体内不能积累过多,否则会使植物中毒,氨中毒使植物的呼吸作用降低,蛋白质合成受阻。未经还原的硝态氮可以在植物体内积累,如养麦、烟草等旱作物和盐土上生长的耐盐植物,都能积累较多的硝酸盐,蔬菜也可在叶片中积累大量的硝酸盐。
由于作物体内与氨结合成氨基酸的有机酸,来源于光合作用产物,如丙酮酸(氨化后成丙氨酸),Q-酮戊二酸(氨化后成谷氮酸)。因此,植物对氮素的吸收,在很大程度上依赖于光合作用的强度,这与群众在实践中认识的施肥效果往往在晴天较好较快的经验相一致。
缺氮的植株施用适量氮肥后,由于体内大量合成了高分子含氮有机物,使植株迅速生长和叶色变黑,因此在生产实践中,氮肥的效果最易从植株的长相和叶色改变中观察到。
虽然铵态氮和硝态氮作为植物氮源的价值相同,但在两种氮源可以选择的条件下,不同植物的相对吸收量仍有明显差异。这种差异受植物的种类、品种和生育期,土壤溶液的反应(PH)及溶液中各种离子的相对含量,两种氮源的浓度等因素的影响。在大田作物中,一般烟草、棉花等旱作物对硝态氮的反应较好,水稻则较多吸收铵态氮。
植物能经由叶面和根直接吸收尿素和某些铵盐作氮源。但尿素在体内的同化过程尚未完全搞清,一般认为,尿素在作物体内尿酶的作用下分解为铵态氮后被利用。
土壤的氮素供应
从农田生态系统中物质循环的角度看,土壤中的氮素流是一种不断转换形态,并有多通道循环的物质流。它的第一个基本特征是随着生物生产活动的不断强化和氮素的有机化,氮在土壤圈中将不断富集和表聚。
土壤是氮素多通道循环中一个最重要的库。随着农田单位面积生物产量的增加,土壤圈的氮素趋向积累;相反,随农田单位面积生物产量的降低氮素趋向减少。
土壤圈中伴随植物生长过程的氮的累积,谓之氮的生物学富集。这是一个农田系统中最经常发生的过程,是指相对惰性的气态氮(N2)及无机氮化物(NO5、NH4+)经由各种生物学途径逐渐转变成积极参与循环的有机氮(-NH2等)及其各种矿化和腐殖化的含氮产物。使用”富集”一词,显然还包含着人类希望增加土壤圈中含氮有机物的这样一个目的在内。
农田氮在土壤圈中的生物学富集,主要依赖于碳的富集(氮的有机化),即依赖于光合作用或有机物第一性生产过程(绿包植物生产)的强度。通常需20份以上碳才能富集一份氮(碳氮比≥20)。
随着土壤圈中氮的生物学富集,土壤肥力不断提高,作物产量不断增加,氮素物质流中有机氮的比率不断增大,因而依靠第一性产品营养的第二性生产(动物生产)及相应的氮循环也随之被大大强化。在我国条件下,一亩农田氮的年收获量增加3公斤(约合150公斤粮食及相应的秸秆),将其转化为饲料时即可多饲养一头猪,因此,农田系统中氮的生物学富集是发展农牧业生产的重要物质基础。
其次,伴随氮的生物学富集及有机化,氮在土壤中将日益表聚,氮素表聚主要与作物根系及相应的生物活动在土壤中由上而下呈锥型分布,植物残体及人类耕作施肥活动集中于土壤表层等因素有关。
氮的表聚现象,一般有利于当季生物产量,因而,如按土壤剖面的发生层次排列,表土层含氮越高,表层与亚层之间的含量差异越小,则土壤越肥沃,作物产量一般较高。
农田生态系统中氮循环的第二个基本特征是,与磷、钾等其他营养元素相比,氮在不同生态圈中存在的主要形态不一,几乎在所有通道的循环,都伴随氮的形态变化,且主要发生的不是化学变化,而是生物化学变化,因此,只有各种生物的参予,才能发生氮形态在各子系统的变化,保持气圈中分子态氮的绝对多数和一定生态条件下各种氮化物的相对稳定。即农田生态系统中氮循环的完成及其强度,紧密地依赖于生物链。从实际生产的要求出发,一方面,人们为了满足作物增产的需要,以各种形式对农田施用氮素,以期增加对光能的利用,最基本的手段是施用化学氮素和有机氮素,充分利用生物固氮;另一方面,人们也将充分利用作物生产的有机氮素,发展和强化动物生产,进而控制和利用各种含氮物质的微生物分解和生物化学反应的进程,提高生物氮素的系统效益。于是,随着作物生产量的增加,各个通道即氮循环也随之被强化。农田生态系统中的氮循环存在”高投入,高产出”和”低投入,低产出”等不同类型。因此,对农田生态系统投入氮越多,经由其各个通道循环的氮量也越多,损耗也越大。这是生产条件下氮素施入量与氮素收获量不成比例,且随施入量递增呈现报酬递减趋势的一个根本原因。
随着化学氮肥的增施,作物产量和氮素吸收量逐步增加,但单位氮素的增产量及边际效应却逐步降低。显然,未被作物利用的那些氮素,用于强化土壤中各个通道的氮循环了。因而,一方面土壤中残留氮的总量增加,能促进土壤中各种微生物活动,土壤氮素释放量和作物单产的增加。随着对农田施氮量的增加,同时也增加了土壤向气圈和水圈的氮素耗散,强化了能引起氮损失的各个通逍。因此,一般说对农田施氮量越高,氮循环强度也越高。与此相应,将形成作物高产和氮素低效高损耗这样两个方面相互相成的效应,反之亦然。有鉴于此,人们经常把农田氮素年收支状况,作为肥料氮量一定生态条件下氮循环强度的指标。作物一生中所吸收的全部氮素,50%~80%来自土壤,随作物类型、土壤供氮条件与施氮量,施肥时期等因素的不同而异。
氮肥 贮存方法
1、尿素是固体氮肥中含氮量最高的肥料,理化性质较稳定,施后对土壤性质没有影响,可施用于任何土壤和作物,可做根外施肥使用。同时尿素也是树脂、塑料、*、医药、食品等工业的重要原料。
2、尿素也可以部分代替蛋白质饲料,例如倒在奶牛青饲料中能代替一部分蛋白质饲料,但尿素的加入量不能超过青饲料的3%和总饲料量的1%,否则牲畜肾脏负担过重,容易引起疾病,大豆饼中含脲酶,不要与尿素混合供给。
3、尿素如果贮存不当,容易吸湿结块,影响尿素的原有质量,给农民带来一定的经济损失,这就要求广大农户要正确贮存尿素。在使用前一定要保持尿素包装袋完好无损,运输过程中要轻拿轻放,防雨淋,贮存在干燥、通风良好、温度在20度以下的地方。
4、如果是大量贮存,下面要用木方垫起20公分左右,上部与房顶要留有50公分以上的空隙,以利于通风散湿,垛与垛之间要留出过道。以利于检查和通风。已经开袋的尿素如没用完,一定要及时封好袋口,以利下年使用。
氮肥 生产原料
天然气、煤炭、石油是生产化肥的三大原料,通常被称为气头、煤头、油头三类,由于石油和煤炭价格的升幅远大于天然气,故按成本优势排列为气头、煤头、油头。比如07年气头企业云天化尿素的毛利率达47.1%,而煤头企业华鲁恒升尿素的毛利率为21.5%。
氮肥 注意事项
长效氮肥施用
长效氮肥适宜于各类农作物和各类土壤条件。我国推广使用的长效氮肥主要有两个品种:长效尿素和长效碳酸氢铵,其施用方法与尿素、碳酸氢铵基本相同。具体施用要点如下:
(1)长效氮肥的氮素释放相对缓慢,释放高峰期比尿素约迟5天,故应比尿素的常规施用期提前。一般早春提前5-6天,夏季提前3-4天为宜。
(2)长效氮肥在土壤中的保氮能力比较强,利用率也较高。因此,它的用量比一般氮肥要略少些,通常比常量减少10%-15%为宜。
(3)由于土质不同,长效氮肥在土壤中吸收保存能力也有明显差异。粘土的吸收保存能力较强,一次用量可多些;而沙质土应以少量多次施用为宜。
(4)要根据作物不同的吸氮特性,科学施用长效氮肥。
提高利用率
1.氮肥适宜施用量推荐
主要可分两大类方法:(l)以土壤供氮量的预测为基础的方法;(2)不需要预测土壤供氮量的方法。两类方法都只是半定量的,需强调:(l)以无氮区作物累积氮量为量度的土壤供氮量(Ns)与作物特性及生长期间的水热条件等密切相关,而且还受到非土壤来源氮量的强烈影响;(2)土壤有机氮的形态与其生物分解性并无明确的联系,因此,土壤有机氮的矿化量(Nm)的化学指标只是经验性的;(3)因此,在理论上,Ns与Nm之间不一定有高的相关性,除非各田块间影响土壤有机氮矿化的各个因素以及非土壤来源氮的数量都相近。“平均适宜施氮量法”有利于氮肥施用量的地区性控制。平均适宜施氮量法是指在同一地区的同一作物上,从氮肥施用量的试验网中得出的各田块适宜的平均值。
2.深施。
这是一项成熟的、效果明显的技术,包括稻田深施,无水层混施、旱地表施后灌水。研究证明,深施的作用主要是降低氨挥发,其效果大小取决于施氮肥后田面水(稻田)或土表(旱地)中存留的氮肥量。
3.施用时期。
利用作物对化肥氮的竞争性吸收以降低土壤中化肥氮的浓度,是减少氮肥损失,提高其利用率的有效途径,并已得到许多田间试验证实。因此,在不同时期氮肥施用量的分配上,应在保证作物前期生长的前提下,尽量减少生长前期的氮施用量,并将重点移到生长中期。
4.硝化抑制剂。
硝化过程中有微量N2O逸出。而且,所形成的硝态氮易于通过反硝化和或淋洗而损失。因此,硝化作用的抑制一直受到广泛重视。
5.脲酶抑制剂。
主要是PPD和NBPT,及其配合使用。国内还有氢醌和涂层尿素,并研究了脲酶抑制剂与硝化抑制剂的配合使用。研究表明,使用脲酶抑制剂后氨挥发的减少量与对照不使用脲酶抑制剂的氨挥发量之间有良好的相关。但是,减少总损失的量与对照的总损失量却并无相关。
6.全国几乎所有的土壤和作物都需要施用氮肥。
氮肥的科学施肥原则是对不同作物、地块和不同生育期的具体施肥量进行实时、定量调控。例如,目前我国大田作物施氮量(N)一般每亩8-15kg,约一半作基肥,其余主要作追肥,具体施肥量应通过土壤测试确定。
7.除小麦等密植作物撒施后灌水、水稻水层撒施外,都要施后覆土。
氮肥基、追、种肥都用,是追肥主角
氮肥氮元素比率
尿素[CO(NH2)2] -约46.7%
硝酸铵(NH4NO3)-约35%
氯化铵(NH4Cl)-约26.2%
硫酸铵[(NH4)2SO4] -约21.2%
碳酸氢铵(NH4HCO3)-约17.7%
建造一个冷库多少钱?冷库造价表成本预算
冷库建设要多少钱。冷库建造成本的规律就是,冷库越大单位造价就越低。一般大型冷库不只是冷冻, 应该有预冷、冷冻和冷藏三部分,一般是比较大型的加工企业会有需要建 造。这样大型的冷库必须要知道冷库具体包含哪些部分和功能,这样才能确定冷库需要的冷库设备的多少以及性能的高低,这些对冷库造价占着相当大的比重。
一个完整的冷库工程的报价包含多个方面,我们以某一案例来说明。
首先需要技术人员根据顾客的要求,在勘测完场地之后设计方案和图纸进行计算和估价。费用通常包含以下几个方面:
1、库体费用
如库体的聚氨酯板、梁/柱加强、顶和底等。
如某些面需要地基混凝土等结构,看具体情况由某一方负责。
2、机组费用
冷却压缩机组——对于冷库来说非常重要的部分。
3、配件费用
如冷库门、冷风机、冷却水塔、水泵、管道、储液罐、分离器、线路、开关……等等。
4、杂费
如运输、化霜排水系统、人工等费用。
最终得出冷库的预算费用。
各种换热器的工作原理和特点
各种换热器 的 工作原理和特点
一、换热器
1、U形管式换热器
每根管子都弯成U形,固定在同一侧管板上,每根管可以自由伸缩,也是为了消除热应力。
性能特点:
(1)优点
此类换热器的特点是管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
(2)缺点
是管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。
此外,为了弥补弯管后管壁的减薄,直管部分需用壁较厚的管子。这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质清洁及不易结垢,高温、高压、腐蚀性强的情形。
2、沉浸式蛇管换热器
沉浸式蛇管换热器以蛇形管作为传热元件的换热器,是间壁式换热器种类之一。根据管外流体冷却方式的不同,蛇管式换热器又分为沉浸式和喷淋式。
(1)优点
这是一种古老的换热设备。它结构简单,*、安装、清洗和维修方便,便于防腐,能承受高压,价格低廉,又特别适用于高压流体的冷却、冷凝,所以现代仍得到广泛应用。
(2)缺点
由于容器体积比管子的体积大得多、笨重、单位传热面积金属耗量多,因此管外流体的表面传热系数较小。为提高传热系数,容器内可安装搅拌器。
3、列管式换热器
冷流体走管内,热流体经折流板走管外,冷、热流体通过间壁换热。
性能特点:
列管式换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。
为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。一般壳程压强超过0.6MPa时,由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其它结构。
SPEET无源动力强化换热系统,是由深圳中创鼎新工业节能智能化技术有限公司自主研发的一项革新性的工业高效节能技术,可广泛应用于化工、冶金、石油、制盐、制糖、造纸、制药、海水淡化、制冷等行业的列管式换热器,有效解决列管式换热系统因设计或运行等原因导致的换热效率不足的问题,有效提高换热效率20%以上。
与传统的换热器清洗方式相比,SPEET具有无腐蚀、无污染、免拆卸、对设备无损伤、高可靠性、高效节能的优势。
SPEET工作原理为,沿着介质流向将SPEET纽带插入到每一根换热管中,当设备运行时,利用介质自身流速驱动SPEET装置不停地快速旋转,一方面打破管内温度分层,将流体边界滞留层厚度降低一个数量级,实现强化换热;另一方面通过强化扰流和对管壁不规则刮扫,减少垢的析出,阻止垢的附着,加快垢的剥蚀,防止换热管壁结晶或结疤,从而实现在线除垢防垢。通过这两方面共同作用,将换热器的换热系数K值提高20%-50%以上,从而达到节能降耗的目的。
SPEET安装便捷,无需停工或改动换热器主体;无需专人维护,节省化学清洗及人工清洗费用,投资回报周期6到12个月,经济效益十分显著,大幅提升大工业用户能源利用效率,助力工业企业低碳绿色发展。
4、螺旋板式换热器
由两块相互平行的钢板,卷制成相互隔开的螺旋形流道。螺旋板的两端焊有盖板。冷热流体分别在两流道内流动。
性能特点:
(1)传热效率高(性能好)
一般认为螺旋板式换热器的传热效率为列管式换热器的1~3倍。等截面单通道不存在流动死区,定距柱及螺旋通道对流动的扰动降低了流体的临界雷诺数,水-水换热时,螺旋板式换热器的传热系数最大可达3000W/(㎡·K)。
(2)有效回收低温热能
螺旋板式换热器由两张卷制而成,进行余热回收,充分利用低温热能。
(3)运行可靠性强
不可拆式螺旋板式换热器螺旋通道的端面采用焊接密封,因而具有较高的密封性,保证两种工作介质不混合。
(4)阻力小
在壳体上的接管采用切向结构。比较低的压力损失,处理大容量蒸汽或气体;有自清刷能力,因其介质呈螺旋型流动,污垢不易沉积;清洗容易,可用蒸汽或碱液冲洗,简单易行,适合安装清洗装置;介质走单通道,允许流速比其他换热器高。
(5)可多台组合使用
单台设备不能满足使用要求时,可以多台组合使用。但组合时,必须符合下列规定:并联组合、串联组合,设备和通道间距相同。混合组合:一个通道并联,一个通道串联。
5、喷淋式换热器
热流体在*的管中流过,冷却水喷淋流过蛇管。
性能特点:
这种换热器是将换热管成排地固定在钢架上,热流体在管内流动,冷却水从上方喷淋装置均匀淋下,故也称喷淋式冷却器。喷淋式换热器的管外是一层湍动程度较高的液膜,管外给热系数较沉浸式增大很多。
另外,这种换热器大多放置在空气流通之处,冷却水的蒸发亦带走一部分热量,可起到降低冷却水温度,增大传热推动力的作用。因此,和沉浸式相比,喷淋式换热器的传热效果大有改善。
6、热管换热器
一根密封的金属管子,管内壁覆盖一层有毛细结构材料作成的芯网,其中间是空的。管内装有一定量的热载体(如液氨、氟利昂等),被气化,流向冷端,蒸汽在冷端被冷凝,放出汽化潜热,而加热了冷流体。冷凝液又流回热端,如此反复。
性能特点:
(1)热管换热器可以通过换热器的中隔板使冷热流体完全分开,在运行过程中,单根热管因为磨损、腐蚀、超温等原因发生破坏时,基本不影响换热器运行。热管换热器用于易然、易爆、腐蚀性强的流体,换热场合具有很高的可靠性。
(2)热管换热器的冷、热流体完全分开流动,可以比较容易的实现冷、热流体的逆流换热。冷热流体均在管外流动,由于管外流动的换热系数远高于管内流动的换热系数,用于品位较低的热能回收场合非常经济。
(3)对于含尘量较高的流体,热管换热器可以通过结构的变化、扩展受热面等形式,解决换热器的磨损和堵灰问题。
(4)热管换热器用于带有腐蚀性的烟气余热回收时,可以通过调整蒸发段、冷凝段的传热面积来调整热管管壁温度,使热管尽可能避开最大的腐蚀区域。
7、套管式换热器
冷、热流体分别在内管和套管中流动并换热。
(1)优点
这种换热器具有若干突出的优点,所以至今仍被广泛用于石油化工等工业部门。
结构简单,传热面积增减自如。因为它由标准构件组合而成,安装时,无需另外加工。传热效能高。它是一种纯逆流型换热器,同时还可以选取合适的截面尺寸,以提高流体速度,增大两侧流体的传热系数,因此它的传热效果好。液-液换热时,传热系数为 870~1750W/(m2·℃)。这一点特别适合于高压、小流量、低传热系数流体的换热。套管式换热器的缺点是占地面积大;单位传热面积金属耗量多,约为管壳式换热器的五倍;管接头多,易泄漏;流阻大。结构简单,工作适应范围大,传热面积增减方便,两侧流体均可提高流速,使传热面的两侧都可以有较高的传热系数,是单位传热面的金属消耗量大,为增大传热面积、提高传热效果,可在内管外壁加设各种形式的翅片,并在内管中加设刮膜扰动装置,以适应高粘度流体的换热。可以根据安装位置任意改变形态,利于安装。(2)缺点
检修、清洗和拆卸都较麻烦,在可拆连接处容易造成泄漏。生产中,有较多材料选择受限,由于套管式换热器大多是内管中不允许有焊接,因为焊接会造成受热膨胀开裂,而套管式换热器大多数为了节省空间选择,弯制,盘制成蛇管形态,故有较多特殊的耐腐蚀材料无法正常生产。套管换热器国内还没有形成统一的焊接标准,各个企业都是根据其它换热产品经验选择焊接方式,所以,套管式换热器的焊接处,出现各类问题司空见惯,需要经常注意检查,保养。
二、具有补偿圈的换热器
1、浮头式换热器
两端的管板,有一段不与壳体相连,可以在管长方向自由浮动,当壳体与管束因温度不同而引起不同的热膨胀时,可以消除热应力。
冷流体入口热流体入口
(1)优点
管束可以抽出,以方便清洗管、壳程;介质间温差不受限制;可在高温、高压下工作;可用于结垢比较严重的场合;可用于管程易腐蚀场合。 (2)缺点
小浮头易发生内漏;金属材料耗量大,成本高20%;结构复杂。 2、夹套式换热器
夹套式换热器是间壁式换热器的一种,在容器外壁安装夹套制成。
性能特点:
结构简单,但其加热面受容器壁面限制,传热系数也不高。为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它增加湍动的措施,以提高夹套一侧的给热系数。为补充传热面的不足,也可在釜内部安装蛇管。夹套式换热器广泛用于反应过程的加热和冷却。
3、板翅式换热器
由隔板、肋片和侧条组成单元体,多个单元体经逆流或错流组装为组装件,再将带有集流出口的集流箱焊接到组装件上。由于材料轻薄,换热面积与换热器体积之比可达4000 m2/ m3。
性能特点:
(1)传热效率高,由于肋片对流体的扰动使边界层不断破裂,因而具有较大的换热系数;同时由于隔板、肋片很薄,具有高导热性,所以使得板肋式换热器可以达到很高的效率。
(2)紧凑,由于板肋式换热器具有扩展的二次表面,使得它的比表面积可达到1000 m2/ m3 。
(3)轻巧,原因为紧凑且多为铝合金*,现在钢制,铜制,复合材料等的也已经批量生产。
(4)适应性强,板肋式换热器可适用于:气-气、气-液、液-液、各种流体之间的换热以及发生集态变化的相变换热。通过流道的布置和组合能够适应:逆流、错流、多股流、多程流等不同的换热工况。通过单元间串联、并联、串并联的组合,可以满足大型设备的换热需要。工业上可以定型、批量生产以降低成本,通过积木式组合扩大互换性。
(5)*工艺要求严格,工艺过程复杂。
(6)容易堵塞,不耐腐蚀,清洗检修很困难,故只能用于换热介质干净、无腐蚀、不易结垢、不易沉积、不易堵塞的场合。
4、涡流热膜换热器
流热膜换热器体积只有传统管壳式换热器的1/5,采用全不锈钢焊接结构。既具有钎焊板式换热器体积小、耐高温的优势,又克服了框架板式换热器胶条老化、维护费用高的缺陷,它采用经纳米技术处理的不锈钢涡流管作为换热元件,极大提高了换热器的整体性能。
性能特点:
高效节能,该换热器传热系数为6000~8000W/(m2·℃);全不锈钢*,使用寿命长,可达20a以上,十年内出现换热器质量问题免费更换;改层流为湍流,提高了换热效率,降低了热阻;换热速度快,耐高温(400℃),耐高压(2.5MPa);结构紧凑,占地面积小,重量轻,安装方便,节约土建投资;设计灵活,规格齐全,实用针对性强,节约资金;应用条件广泛,适用较大的压力、温度范围和多种介质热交换;维护费用低,易操作,清垢周期长,清洗方便;采用纳米热膜技术,显著增大传热系数;应用领域广阔,可广泛用于热电、厂矿、石油化工、城市集中供热、食品医药、能源电子、机械轻工等领域。
以上就是好一点整理的液氨是有机物吗相关内容,想要了解更多信息,敬请查阅好一点。