好一点小编带来了滗水器的工作原理 看了百度百科,没看明白。视频也没看清楚。 谁能详细解释一下 不胜感激,希望能对大家有所帮助,一起来看看吧!

滗水器的工作原理 看了百度百科,没看明白。视频也没看清楚。 谁能详细解释一下 不胜感激
一般用于SBR、CASS等活性污泥法的排水用。
例如SBR工艺分为进水、曝气、静置、排水四个阶段。
滗水器的工作原理就是再排水阶段开启,逐步下降,达到在不减少活性污泥浓度的情况下将上清液排出。
滗水器的基本简介
滗水器特点
· 滗水器可根据工艺要求设计滗水深度。
· 采用PLC 程控智能驱动,滗水器接到排水指令后快速将滗水堰口由停放位置移动到水面以下,将静止后的上清液排水,来回往复进行排水。当滗水器到达最低水位后,安放在最低水位的液位开关发出返回指令,滗水器快速回升到最初的停放位置,完成一个工作循环。
· 在堰口规定的负荷范围内、堰口下液面不会扰动。堰口设有浮筒和挡渣板,确保出水水质。
· 特殊的设计,保证滗水器重力和所受浮力基本平衡,使驱动功耗很低。
· 滗水器至主排水管为不锈钢刚性连接,避免了因软连接造成的故障率高、寿命短、维修工作强度大等弊病。
· 整个滗水器具有坚固的支架,可以承受工作中的各种应力。
请问滗水器是什么意思?
滗析器又称滗水器,是水处理工艺SBR工艺中最关键的机械设备之一。滗水器按其结构形式可分为机械式、虹吸式、自浮式、简易式等几种。目前在国内应用广泛的多为旋转式(属机械式滗水器的一种)。�旋转式滗水器由滗水堰口、支管、干管、可进行360°旋转的回转支撑、滑动支撑、驱动装置、自动控制装置等组成。工作时在驱动装置的作用下,滗水堰口以滗水器底部回转支撑中心线为轴向下作变速圆周运动,在此过程中SBR反应池中的上清液将通过滗水堰口流入滗水支管、再经滗水干管排出。滗水工作完成后,滗水堰口以滗水器底部的回转支撑中心线为轴向上作匀速圆周运动,使滗水堰口停在待机位置,待进水、生化反应、沉淀等工序完成后再进行下一次滗水过程。
http://co.163.com/neteaseivp/zhuanti/200506211625/
虹吸式滗水器设计计算
在众多形式的滗水器中,虹吸式滗水器具有以下优点:(1)结构简单;(2)无转动部件,维修简便;(3)运行可靠,容易加工,成本低。在整个滗水器系统中,唯一的运动部件是一个小直径的电磁阀,在国外应用较多,但有关设计计算的报道很少。虹吸式滗水器见图1。其工作原理是:在进水与曝气阶段,池内水位不断上升,短管内的水位也上升,但由于U型管中水封作用,管内空气被阻留而且受压。当池内水位到达最高设计水位时,短管内的水位也达到最高,但仍低于横管管底,U型管中上升管与下降管中的水位差达到最大,管内被阻留的空气的压力使短管内水位保持在横管管底以下,以避免水流出池外。沉淀阶段过后,进入排水阶段,此时打开放气电磁阀门,管内空气被压出,池内上清液在水位差的压力作用下,从短管进入收集横管并通过U型管排出,直至到达最低水位。当排水开始后,关闭电磁阀,这样可保证当池内水位低于横管时,仍能通过虹吸作用到达最低水位
http://www.wanfangdata.com.cn/qikan/periodical.Articles/sdjzgcxyxb/sdjz2000/0001/000106.htm你自己参考一下吧!
sbr工艺中可以用2个滗水器么?
设备简介
PS系列旋转式滗水器是一种自动化程度较高的机械设备,是SBR、CASS的重要设备,由于各种处理方法都是采用周期排水,排水时池中的水位是变化的,为保证排水时不会扰动池中各水层,使排出上清液始终位于最上层,这就要求使用一种能随水位变化而调节的出水堰,即滗水器。
旋转式滗水器是在我厂在消化国外技术的基础上开发研制的,专门为序批式生物处理系统而设计,具有良好的水力机械性能。能实现滗水过程中进入出水堰的水流呈层流状态,滗水深度可调,使出水量可调,是循环式活性污泥法工艺的关键设备。该滗水器行程精确可调,具有滗水效果好、动作灵敏可靠、能耗低、无噪音、自动化程度高、集中管理方便,体积小、故障率低、维护方便等优点。可广泛适用于城市污水处理厂及造纸、啤酒,制革、制药、食品、垃圾处理等行业的污水处理中。
一、主要工艺流程如下:
SBR、CASS池内进水、 风机嚗气、 污泥沉淀、 滗水器滗水
二、设备主要技术性能:
(1)设备主体采用三点旋转支撑,各个部件配合紧凑、运转平稳。
(2)浮筒采用浮动设计,能根据池内水位不断变化而始终保持浮筒挡渣面与水位持平,达到挡渣的最佳效果。
(3)设备动力采用摆线针轮减速机带动丝杠作匀速直线运动,在设备运行时能保证滗水槽连续、均匀地滗水。
(4)设备运行时滗水速度均匀、滗水槽内无污泥滞留、水面平稳无波动、主体动力无噪音、滗水完毕能自动反程。
(5 )水下旋转部分采用机械密封装置,能保证滗水器旋转部分长期运转而不漏水。
(6) 机械传动部分采用摆线针轮减速机,有效地保证滗水速度的稳定并提供足够的推力,电动推杆内部配置多级保护,能保证设备长期运行而不至损坏..
(7)设备正常运行时滗水范围能通过电控柜内自带的(滗水深度调节器)在0至最大滗水深度之间作随意调整.
三、工作原理
PS型旋转式滗水器由滗水装置、传动装置、撇渣浮筒装置及回转支承等组成。驱动机构通过可伸缩推杆带动滗水装置及撇渣浮筒装置绕回转支承旋转,从而使滗水堰口上下移动,达到滗出上清液的目的。
简述SBR法工艺的基本原理及其特点,采纳
SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。
优点:1、 理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。 2、 运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。 3、 耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。 4、 工艺过程中的各工序可根据水质、水量进行调整,运行灵活。 5、 处理设备少,构造简单,便于操作和维护管理。 6、 反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。 7、 SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。 8、 脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。 9、 工艺流程简单、造价低。主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
缺点:1、自动化控制要求高。 2、排水时间短(间歇排水时),并且排水时要求不搅动沉淀污泥层,因而需要专门的排水设备(滗水器),且对滗水器的要求很高。 3、后处理设备要求大:如消毒设备很大,接触池容积也很大,排水设施如排水管道也很大。 4、滗水深度一般为1~2m,这部分水头损失被白白浪费,增加了总扬程。 5、由于不设初沉池,易产生浮渣,浮渣问题尚未妥善解决。
SBR工艺有机物的降解规律与推流式曝气池类似,推流式曝气池是空间(长度)上的推流,而SBR反应池是时间意义上的推流。由于SBR工艺有机物浓度是逐渐变化的,在反应初期,池内有机物浓度较高,如果供氧速率小于耗氧速率,则混合液中的溶解氧为零,对单一的微生物而言,氧气的得到可能是间断的,供氧速率决定了有机物的降解速率。随着好氧进程的深入,有机物浓度降低,供氧速率开始大于耗氧速率,溶解氧开始出现,微生物开始可以得到充足的氧气供应,有机物浓度的高低成为影响有机物降解速率的一个重要因素。从耗氧与供氧的关系来看,在反应初期SBR反应池保持充足的供氧,可以提高有机物的降解速度,随着溶解氧的出现,逐渐减少供氧量,可以节约运行费用,缩短反应时间。 SBR反应池通过曝气系统的设计,采用渐减曝气更经济、合理一些
请参考百度百科
科普一下MBBR和MBR的区别
MBBR工艺原理是通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。
而MBR膜主要分中空纤维和平板膜,作用是水分子和小分子物质可以通过,大分子以及悬浮颗粒不能通过,这就是做到了泥水分离,出水清澈。
而MBBR膜后面还是要加传统的沉淀池达到沉淀的效果,出水当然没有MBR膜的出水清澈。
现在用MBR的还不是很普遍,很多废水处理主要还是用MBBR膜。
原因是MBR膜最多也就3到5年的寿命,MBBR膜效果虽然比不上MBR膜,但是MBBR膜寿命相当的长。
也有的废水处理中用MBR膜的,处理效果相当不错的,如果想做MBR膜,最好是用平板膜,寿命大概5年的样子。
最好是半年清洗一次。
而中空纤维效果虽好,运用起来相当费神,基本上一个月清洗一次,容易断丝,堵塞。
求cass资料
http://www.chinacitywater.org/bbs/search.php?searchid=84&orderby=lastpost&ascdesc=desc&searchsubmit=yes
可以去看看
CCAS工艺,即连续循环曝气系统工艺(Co
ntinuous Cycle Aeration System),是一种连续进水式SBR曝气系统。这种工艺是在SBR(Sequencing Batch Reactor,序批式处理法)的基础上改进而成。SBR工艺早于1914年即研究开发成功,但由于人工操作管理太烦琐、监测手段落后及曝气器易堵塞等问题而难以在大型污水处理厂中推广应用。SBR工艺曾被普遍认为适用于小规模污水处理厂。进入60年代后,自动控制技术和监测技术有了飞速发展,新型不堵塞的微孔曝气器也研制成功,为广泛采用间歇式处理法创造了条件。1968年澳大利亚的新南威尔士大学与美国ABJ公司合作开发了“采用间歇反应器体系的连续进水,周期排水,延时曝气好氧活性污泥工艺”。1986年美国国家环保局正式承认CCAS工艺属于革新代用技术(I/A),成为目前最先进的电脑控制的生物除磷、脱氮处理工艺。 CCAS工艺对污水预处理要求不高,只设间隙15mm的机械格栅和沉砂池。生物处理核心是CCAS反应池,除磷、脱氮、降解有机物及悬浮物等功能均在该池内完成,出水可达标排放。
经预处理的污水连续不断地进入反应池前部的预反应池,在该区内污水中的大部分可溶性BOD被活性污泥微生物吸附,并一起从主、预反应区隔墙下部的孔眼以低流速(0.03-0.05m/min)进入反应区。在主反应区内依照“曝气(Aeration)、闲置(Idle)、沉淀(Settle)、排水(Decant)”程序周期运行,使污水在“好氧-缺氧”的反复中完成去碳、脱氮,和在“好氧-厌氧”的反复中完成除磷。各过程的历时和相应设备的运行均按事先编制,并可调整的程序,由计算机集中自控。
CASS工艺发展至今,已在城市污水和工业废水处理领域逐步得到应用。但是,CASS工艺设计方法的研究却发展缓慢,目前还处于经验阶段,究其原因有两点:一是专业技术人员比较侧重于主要设备(如滗水器)和自控系统的研究开发,而忽略了对CASS工艺设计方法的研究;二是CASS工艺乃至所有的间歇式活性污泥工艺的反应过程都比较复杂,其部分生物作用机理至今仍在研究之中。
高氨氮污水对于环境的危害日益引起人们的重视,国内外目前对于应用CASS工艺处理高氨氮污水的研究还处于起步阶段,处理效果也不理想,脱氮率较低。研究如何改进CASS工艺设计方法,将其用于高氨氮污水的处理,充分发挥CASS工艺脱氮除磷效果好、耐冲击负荷能力强、防止污泥膨胀、建设费用低和管理方便等优点,对于促进CASS工艺的发展和改善水体环境具有现实意义。
1.现行的CASS工艺设计方法
1.1 活性污泥工艺设计计算方法
活性污泥工艺的设计计算方法有三种:污泥负荷法、泥龄法和数学模型法。三种方法各有其特点,分述如下:
1、污泥负荷法
污泥负荷法是目前国内外最流行的活性污泥设计方法,几十年来,污泥负荷法设计了成千上万座污水处理厂,充分说明其正确性和适用性。
污泥负荷法也有其弊端,主要表现为:一是污泥负荷法设计参数的选择主要依靠设计者的经验,这对于经验较少的设计者来讲相当困难;二是对脱氮要求未加考虑,影响了设计的精确性和可靠性。
2、泥龄法
泥龄法是经验和理论相结合的设计计算方法,比污泥负荷法更加精确可靠;泥龄法可以根据泥龄的选择,实现工艺的硝化和反硝化功能;同时,泥龄参数的选择范围比污泥负荷法窄,设计者选择起来难度较小。
泥龄法的设计参数大多是根据国外污水试验得出的,需结合我国的城市生活污水水质加以修正,这是其目前应用的困难所在。
3、数学模型法
1986年,原国际水污染与控制协会IAWPRC提出了活性污泥1号数学模型,其后十几年里,随着数学模型的完善,越来越多的活性污泥系统开始采用它进行工程设计和优化。
数学模型在理论上是比较完美的,但具体应用则存在不少问题,主要是由于污水处理的复杂性和多样性,模型中所包含的大量工艺参数需要根据具体的水质进行调整和确定,这需要大量的工程积累,即使简化了的数学模型,应用也相当困难。到目前为止,数学模型在国外尚未成为普遍采用的设计方法,而在我国还停留在研究阶段。
1.2 目前CASS工艺设计计算方法
CASS工艺属于活性污泥法范畴,但由于其运行方式独特,与传统活性污泥法又有很大的差别。在同一周期内,池内的污水体积、污染物的浓度、DO和MLSS时刻都在发生变化,是一种非稳态的反应过程。
目前CASS工艺设计采用污泥负荷法,该方法不考虑反应池内基质浓度、MLSS和DO含量在时间上的变化,只考虑进出水有机物的浓度差,并忽略同一反应周期内沉淀、滗水和闲置阶段的生物降解作用,采用与传统活性污泥法基本相同的计算公式。
CASS工艺采用污泥负荷法进行设计时,除反应池容积计算与传统活性污泥法不同,其它如反应池DO和剩余污泥排放量等计算方法与传统活性污泥工艺相同,因此,本节着重介绍CASS工艺反应池容积的计算方法。
1.2.1 计算BOD-污泥负荷(Ns)
BOD-污泥负荷是CASS工艺的主要设计参数,其计算公式为:
(1)
式中: Ns——BOD-污泥负荷,kgBOD5/(kgMLSS•d),生活污水取0.05~0.1
kgBOD5/(kgMLSS•d),工业废水需参考相关资料或通过试验确定;
K2——有机基质降解速率常数,L/(mg•d);
Se——混合液中残存的有机物浓度,mg/L;
η——有机质降解率,%;
?——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值,一般在生活污水中,?=0.75。
(2)
式中: MLVSS——混合液挥发性悬浮固体浓度,mg/L;
MLSS——混合液悬浮固体浓度,mg/L;
1.2.2 CASS池容积计算
CASS池容积采用BOD-污泥负荷进行计算,计算公式为:
(3)
式中:V——CASS池总有效容积,m3;
Q——污水日流量,m3/d;
Sa、Se——进水有机物浓度和混合液中残存的有机物浓度,mg/L;
X——混合液污泥浓度(MLSS),mg/L;
Ns——BOD-污泥负荷,kgBOD5/(kgMLSS•d);
?——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值。
1.2.3 容积校核
CASS池的有效容积由变动容积和固定容积组成。变动容积(V1)指池内设计最高水位和滗水器排放最低水位之间的容积;固定容积由两部分组成,一部分是安全容积(V2),指滗水水位和泥面之间的容积,安全容积由防止滗水时污泥流失的最小安全距离决定;另一部分是污泥沉淀浓缩容积(V3),指沉淀时活性污泥最高泥面至池底之间的容积。
CASS池总的有效容积:
V=n1×(V1+V2+V3) (4)
式中:V——CASS池总有效容积,m3;
V1——变动容积,m3;
V2——安全容积,m3;
V3——污泥沉淀浓缩容积,m3;
n1——CASS池个数。
设池内最高液位为H(一般取3~5m),H由三个部分组成:
H=H1+H2+H3 (5)
式中:H1——池内设计最高水位和滗水器排放最低水位之间的高度,m;
H2——滗水水位和泥面之间的安全距离,一般取1.5~2.0m;
H3——滗水结束时泥面的高度,m;
其中:
(6)
式中: A——单个CASS池平面面积,m2;
n2——一日内循环周期数;
H3=H×X×SVI×10-3 (7)
式中:X——最高液位时混合液污泥浓度,mg/L;
污泥负荷法计算的结果,若不能满足H2≥H-(H1+H3),则必须减少BOD-污泥负荷,增大CASS池的有效容积,直到条件满足为止。
1.2.4 设计方法分析
从上述设计方法的描述中可以看出,现行的CASS工艺设计具有以下几个方面的特点:
1、设计方法简单,设计参数单一,在传统的以污泥负荷为主要设计参数的活性污泥设计法基础上,采用容积进行校核,以保证滗水过程中的污泥不流失。
2、设计只针对主反应区容积,而生物选择区容积则是按照主反应区容积的5%设计。
3、污泥负荷法设计重点针对有机物质的降解,对脱氮未加考虑,难以满足污水排放对于氮的要求,故此方法具有片面性,难以满足高氨氮污水处理后达标排放。
2 CASS工艺设计方法改进
CASS工艺目前广泛应用的设计方法是污泥负荷法,污泥负荷法立足于有机物的去除,对系统脱氮效果则未加考虑,而对于高氨氮污水,脱氮效果的考虑更为重要,因此需结合目前已有的CASS工艺设计方法,加入脱氮工艺设计,对传统的CASS工艺设计方法进行改进。
2.1 CASS工艺设计方法改进的思路
高氨氮的污水脱氮设计的改进思路如下:
1、设计采用静态法。设计方法不追踪CASS反应池内基质和活性污泥浓度在时间上的变化过程,而是着重于在某一进水水质条件下经系统处理后能达到的最终处理效果。对于同步硝化反硝化,由于其机理还处在进一步研究阶段,在设计中不加考虑。对于沉淀和滗水阶段的生物反应,其作用并不明显,因此在设计中对这两个阶段的生物反应不加考虑。
2、将主反应区和预反应区分开设计,主反应区主要功能为有机物降解和硝化,而预反应区的功能主要为生物选择和反硝化脱氮。
3、主反应区采用泥龄法设计,而将污泥负荷作为导出参数,结合试验研究的结论,通过污泥负荷对设计结果进行校核。
4、反应池的尺寸通过进水量和污泥沉降性能确定。
2.2 主反应区容积设计
主反应区设计采用泥龄法,并用污泥负荷进行校核,其设计步骤如下:
1、计算硝化菌的最大比增长速率
当污水pH和DO都适合于硝化反应进行时,计算亚硝酸菌的比增长速率公式为:
(8)
式中:μN,max——硝化菌的最大比增长速率,d-1;
T——硝化温度,℃;
2、计算稳定运行状态下的硝化菌比增长速率
(9)
式中:μN——硝化菌的比增长速率,d-1;
N——硝化出水的NH3-N浓度,mg/L;
KN——饱和常数,设计中一般取1.0mg/L。
3、计算完成硝化反应所需的最小泥龄
(10)
式中: ——最小泥龄,d;
μN——硝化菌的比增长速率,d-1。
4、计算泥龄设计值
本处采用Lawrence和McCarty在应用动力学理论进行生物处理过程设计时提出的安全系数(SF)概念,SF可以定义为:
SF= / (11)
式中: ——设计泥龄,d;
SF使生物硝化单元在pH值、溶解氧浓度不满足要求或者进水中含有对硝化有抑*用的有毒有害物质时仍能保证达到设计所要求的处理效果。美国环保局建议一般取1.5~3.0。
5、计算以VSS为基础的含碳有机物(COD)的去除速率
活性异养菌生物固体浓度X1可用下式计算:
(12)
式中:X1——活性异养菌生物固体浓度,mg/L;
YH——异养菌产率系数,gVSS/gCOD或gVSS/gBOD;
bH——异养菌内源代谢分解系数,d-1;
S0——进水有机物浓度,mgCOD/L或mgBOD/L;
S1——出水有机物浓度,mgCOD/L或mgBOD/L;
——设计泥龄,d;
t——水力停留时间,d;
活性生物固体表观产率系数,YH,NET
将含碳有机物的去除速率定义为:
(13)
则可以得到下式:
1/=YH,NET•qH (14)
曝气池混合液VSS由三部分组成:活性生物固体、微生物内源代谢分解残留物和吸附在活性污泥上面不能为微生物所分解的进水有机物,VSS浓度可以表示为:
(15)
式中:X——VSS浓度,mg/L;
△S——基质浓度变化,mgCOD/L或mgBOD/L;
YH——以VSS为基础的产率系数,gVSS/gCOD或gVSS/gBOD;
b——以VSS为基础的活性污泥分解系数,d-1;
以VSS为基础的(浓度为X)的有机物去除速率可以表示为:
1/ =YH,NET•qOBS (16)
6、计算生化反应器水力停留时间t
(17)
7、主反应区容积:
VN=Q t (18)
式中:VN——主反应区容积,m3;
Q——进水流量,m3/d;
8、有机负荷校核
有机负荷F/M:
(19)
式中:?——MLVSS/MLSS,一般取0.7。
根据相关试验结论,若F/M不在0.18~0.25 kgCOD/(kgMLSS•d),则需改变泥龄,进行重新设计。
10、氨氮负荷校核
氨氮负荷SNR:
(20)
式中:N——主反应区产生NO3-N总量TKN,mg/L。
根据相关试验结论,若SNR>0.045 kg NH3-N/(kgMLSS•d),则需增大泥龄,进行重新设计。
2.3 预反应区容积设计
预反应区的功能设计为反硝化,其设计步骤如下:
1、计算反硝化速率SDNR
反硝化速率可以根据试验结果或文献报道值确定,也可以按下面的方法计算:
温度20℃时:SDNR ( 2 0) =0.3F/M+0.029(21)
温度T℃时: SDNR (T)= SDNR (2 0) •θ( T- 2 0 ) (θ为温度系数,一般取1.05) (22)
2、缺氧池的MLVSS总量为:
LA=QND/ SDNR (T) (23)
式中:ND——反硝化去除的NO3-N,kgN/d。
3、缺氧池的容积:
VAN=1000LA/X? (24)
4、缺氧池的水力停留时间:
tA=VAN/Q (25)
5、系统的总泥龄:
(26)
2.4 反应器尺寸的确定
CASS反应器尺寸的确定主要是确定反应器的高度和面积,以满足泥水分离和滗水的需要。由于预反应区始终处于反应状态,不存在泥水分离的问题,且预反应区底部通过导流孔与主反应区相连,其水面高度与主反应区平齐,因此计算出主反应区的设计高度也同时计算出了预反应区的水面高度。所以反应区尺寸的确定主要是主反应区尺寸的确定。
CASS池的泥水分离和SBR相同,生物处理和泥水分离结合在CASS池主反应区中进行,在曝气等生物处理过程结束后,系统即进入沉淀分离过程。在沉淀过程初期,曝气结束后的残余混合能量可用于生物絮凝过程,至池子趋于平静正式开始沉淀一般持续10min左右,沉淀过程从沉淀开始后一直延续至滗水阶段结束,沉淀时间为沉淀阶段和滗水阶段的时间总和。
污泥泥面的位置则主要取决于污泥的沉降速度,污泥沉速主要与污泥浓度、SVI等因素有关,在CASS系统中,污泥的沉降速度vS可简单地用下式计算:
vS=650/(XT×SVI) (27)
式中:vS——污泥沉速(m/h);
XT——在最高水位时浓度(kg/m3),为安全计,采用主反应区中设计值 X,一般取3000~4200 mg/L;
SVI——污泥沉降指数(mL /g)。
为避免在滗水过程中将活性污泥带出系统,需要在滗水水位和污泥泥面之间保持一最小的安全距离HS。为保持滗水水位和污泥泥面之间的最小安全距离,污泥经沉淀和滗水阶段后,其污泥沉降距离应≥ΔH+HS,期间所经历的实际沉淀时间为(ts+td-10/60)h,故可得下式:
vS×(ts +td -10/60)=ΔH+HS (28)
式中:ΔH——最高水位和最低水位之间的高度差,也称滗水高度(m),ΔH一般不超过池子总高的40%,与滗水装置的构造有关,一般其值最大在2.0~2.2m左右;
ts——沉淀时间;
td——滗水时间。
联立式(6.47)和(6.48)即可得:
(29)
式中:ΔV——周期进水体积(m3);
A——池子面积(m2);
HT——最高水位(m);
式中沉淀时间ts、滗水时间td可预先设定,根据水质条件和设计经验可选择一定的SVI值,安全高度HS一般在0.6~0.9m左右。ΔV由进水量决定,这样式(29)中只有池子高度HT和面积A未定。根据边界条件用试算法即可求得式(29)中的池子高度和面积。
高度HT和面积A的确定方法为:先假定某一池子高度HT,用式(29)求得面积A,从而可求得滗水高度ΔH,如滗水高度超过允许的范围,则重新设定池子高度,重复上述过程。
在求得HT和池子面积A后,即可求得最低水位HB:
HB=HT-△H=HT-ΔV/A(30)
最高水位时的MLSS浓度XT已知,最低水位时的MLSS浓度则可相应求得:
XB=XT×HT /HB(31)
最低水位时的设计MLSS浓度一般应不大于6.0kg/m3。
2.5 剩余污泥计算
每日从系统中排出的VSS重量为L:
L=X? (VAN+VN) / θ (32)
式中:L——每日从系统中排出的VSS重量,kg/d。
2.6 需氧量计算
1、BOD的去除量:
O1=Q (S0-S1)/1000(33)
2、氨氮的氧化量:
O2=QN/1000 (34)
3、生物硝化系统,含碳有机物氧化需氧量与泥龄和水温有关系,每去除1kgBOD需氧1.0~1.3kg,一般取1.1,则碳氧化和硝化需氧量为:
O3=1.1O1+O2(35)
4、每还原1kg NO3-N需2.9kgBOD,由于利用水中的BOD作为碳源反硝化减氧需要量为:
O4=2.9 NDQ/1000(36)
实际需氧量:
O= O3-O4(37)
CASS工艺污泥浓度正常范围
摘 要:污水处理厂是XX市第一座城市二级污水处理厂,污水处理工艺采用了较先进的CASS工艺,现简述其工艺设计方法及参数取值。
关键词:污水处理厂;CASS工艺;工程设计
一 序 言
污水处理厂是XX市第一座城市二级污水处理厂。其服务范围为XX市城区生活污水及部分工业废水;设计服务年限至2020年;建设总规模为5×105 m3/d,其中一期工程为2.5×105 m3/d;厂址位于城郊乡村,厂区占地面积4.58 hm2;城市污水经截流沟输送污水处理厂处理后排放,处理后污水的最终受纳水体为湖泊,故污水排放标准执行一级标准(GB8978-1996,《污水综合排放标准》)。污水处理过程中所伴随产生的剩余污泥经浓缩、脱水后形成含水率为70%-80%的泥饼,装车外运进行填埋处理。
污水处理厂污水处理工艺流程框图见图1.
图1 污水处理厂工艺流程图
二 CASS工艺简介
CASS(Cyclic Activated Sludge System)工艺是循环活性污泥技术(CAST)的一种型式。其主要原理是:把序批式活性污泥法(SBR)的反应池沿长度方向分为两部分,前部为预反应区,后部为主反应区。在预反应区内,微生物能通过酶的快速转移机理迅速吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,对进水水质、水量、pH和有毒有害物质起到较好的缓冲作用,可有效防止污泥膨胀;随后在主反应区经历一个较低负荷的基质降解过程,完成对污水中有机物质的降解。CASS工艺同时能够比较充分发挥活性污泥的降解功能。也能够减轻二沉淀池的负荷,有利于提高二沉池固液分离效果。
三 CASS工艺设计
1 设计基础数据
设计流量按最高日最高时流量进行设计,设计流量为1531.25 m3/h;设计进水水质依据贵阳市城市污水水质确定,设计出水水质按一级标准(GB8978-1996《污水综合排放标准》)执行。
污水设计进出水水质详见表1.
表1 设计进出水水质
项 目
BOD5(mg/l)
COD
(mg/l)
SS
(mg/l)
NH3-N(mg/l)
TP
(mg/l)
进 水
200
300
200
30
4.0
出 水
≤20
≤60
≤20
≤15
≤0.5
2 CASS生物池主要构造
一期工程建设CASS生物池一座,二期工程增建一座。CASS生物池由预反应区和主反应区组成。
预反应区分为两池,两池之间不连通,每池独立连续工作,单池基本尺寸为L×B×H=10.0×8.0×7�0 m,其中有效水深6.5 m,超高0.5 m;预反应区底部设有DN300放空管,顶部设有DN300溢流管和DN300回流污泥管,预反应区与主反应区的隔墙上底部开有800×800 mm连通孔。
主反应区分为四池,各池之间不连通,每池独立连续工作,单池基本尺寸为L×B×H=42.0×20.0×7.0 m,其中有效水深6.0 m,超高1.0 m.每池设置1台电动进水堰、1台浮筒式滗水器、1台回流污泥泵、1台剩余污泥泵、1套膜式曝气管。同时主反应区内还设置有DO测定仪、污泥浓度(MLSS)计、酸度(pH)计、超声波水位计。
四 CASS生物反应区设计
1 预反应区设计
由于污水处理厂排放水的接纳水体为湖泊,而湖泊作为该省“两湖治理”的重点对象,需要重点解决富营养化污染,故本工程对除磷的要求较高,所以预反应区根据活性污泥反应动力学原理进行设计,运行条件按厌氧环境考虑,在预反应区内考虑了较显著的反硝化作用(回流污泥混合液中通常含2.0 mg/l左右的硝态氮)。同时预反应区利用了活性污泥的快速吸附作用而加速对溶解性底物的去除,并对难降解有机物起到良好的水解作用,还可使污泥中的磷在厌氧条件下得到有效的释放。污泥回流量按最大时处理量的20%考虑,污水水力停留时间按1.0 h计。
为了使回流污泥和污水进行充分混合,形成均匀的厌氧环境,在预反应区内设置3台ITT Flygt SR4630型潜水搅拌器,该搅拌器属于高转速(705 r/min)、小叶轮(370 mm)类型,具有较好的混合搅拌功能,考虑到厌氧环境对磷的释放影响较大,故在预反应区内还设置有0O在线测定仪,其输出信号接入CASS反应池PLC子站,PLC子站根据0O值的大小及变化,对回流污泥量进行在线调节,以达到最佳的厌氧环境以利于磷的释放。同时PLC总站可绘制预反应区进水水量、进水水质、污泥回流量与DO的关系曲线,对运行工作起到高效、优质的指导作用。
2 主反应区设计
由于XX市城区的现行排水体制仍为雨污合流制,故雨季时进水中BOD5较低,将导致脱氮除磷所需碳源不足,为避免外加碳源,同时降低管理难度和污水处理成本,故设计中采用了泥龄较长,污泥负荷较低的延时曝气方式,设计泥龄为15.7 d, 污泥负荷取0.088 kg
BOD5/kgMLSS.
由于采用了延时曝气方式,故污泥产泥率比较低,取值为0.945 kgSS/kgBOD5,每日剩余污泥产量为4510 kg,剩余污泥经主反应区内的剩余污泥泵抽升至污泥调节池。污泥调节池内设置有潜水搅拌器以保持池内有氧状态,防止磷的析出。
由于主反应区具有同步硝化和反硝化功能,反硝化主要是在泥水分离阶段使污泥结构内部处于缺氧状态而实现的,因此,PLC子站将根据CASS生物池内的DO值,对生物速率、曝气时间、曝气量、排泥速率等重要运行参数进行在线调节。
排水装置选型时,考虑到主反应区内的滗水深度较大(2.0 m),滗水量也较高(1600 m3/h)而常见的国产旋转式或虹吸式滗水器,在技术水平和产品质量方面均与进口设备存在一定差距,故采用了JETTECH公司的浮筒式滗水器,该滗水器材质为玻璃钢填充聚胺酯。
曝气设备采用了较先进的超微孔膜式曝气管进口设备,与国内常用的球冠形微孔曝气头相比,前者具有更高的氧转移效率,在水深为5.0 m的清水中膜式曝气管具有32%的氧转移效率,比盘式曝气器高25%;同时膜式曝气管比盘式曝气器节能22.7%.另外,膜式曝气管还具有以下特性:1)具有瞬时增加曝气量100%的能力;2)在不增加构筑物或改变构筑物的情况下系统增容20%;3)具备防堵塞与自清洗功能。
为使曝气系统正常运行,鼓风机房内设3台可调导叶片的单级高速罗茨鼓风机(2用1备),鼓风机设计风量为Q=137.6 Nm3/min,设计风压68600 Pa.考虑到反应池为变容运行方式,水位变幅达2.0 m,为减少能耗、降低成本,其中两台为电机采用变频运行方式,同时空气管路独立设置,互不干扰。
五 CASS工作周期设计
CASS生物池以一定的时间序列运行,运行过程包括进水-曝气、静止沉淀、排水排泥、闲置四个阶段,不同的运行阶段的运行方式可根据需要进行调整。本工程CASS生物池每日工作24 h,分为6.0个工作周期,每周期工作时间为4.0 h,其中进水-曝气2.0 h,静止沉淀1.0 h,排水排泥1.0 h.在同一时间各池的工作时序均不同,不会发生重叠,同一时间只有一个反应池滗水,自动控制及操作管理较简单,各池具体工作时序如图2.
图2 CASS反应池工作时序图
进水曝气阶段CASS主反应区内边充水边曝气,同时池内的回流污泥泵连续不断的向预反应区回流污泥。此时有机污染物被微生物氧化分解,同时污水中的氨氮通过微生物的硝化作用转化为硝态氮;
静止沉淀阶段CASS主反应区不充水也不曝气,此时微生物利用水中剩余的DO进行氧化分解,生物池逐渐由好氧状态向缺氧状态转变,开始进行反硝化反应,活性污泥逐渐沉到池底,上层水逐渐变清;
排水排泥阶段CASS主反应区的滗水器开始工作,自上而下逐渐排出上清液,同时池内的剩余污泥泵向污泥调节池输送剩余污泥。此时,生物池逐渐由缺氧状态过渡到厌氧状态,继续进行反硝化反应。
实际运行过程中,由于滗水器的滗水能力是按最不利的情况进行设计选型的,而这种最不利情况不易出现,故实际滗水时间通常要比设计滗水时间短,其剩余时间通常用于CASS主反应区内污泥的闲置,以恢复污泥的吸附能力。
六 结束语
本文介绍的CASS工艺设计方法及设计参数取值已应用于XX市污水处理厂等十多座污水处理厂,目前, 十余座污水处理厂已经投入正常运行, 其中一座相同工艺、相近规模的污水处理厂(3.0×105 m3/d)也已建成并已完成试运行,其各项指标值均满足设计要求,运行效果详见下表:
表2 实际进出水水质(平均值)
项 目
BOD5(mg/l)
COD
(mg/l)
SS
(mg/l)
NH3-N(mg/l)
TP
(mg/l)
进 水
120
180
130
20
3.5
出 水
15
30
18
5
0.5
实践证明,上述设计方法及参数取值是合理可行的,同时也说明CASS工艺是适合于中小城镇污水处理的一种实用工艺。
参考文献:略
以上就是好一点整理的滗水器的工作原理 看了百度百科,没看明白。视频也没看清楚。 谁能详细解释一下 不胜感激相关内容,想要了解更多信息,敬请查阅好一点。